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ABSTRACT

The feasibility of using a free-flight range to investigate the re-
entry behavior of small spherical particles (400 to 700 microns diameter)
was experimentally investigated.

Using laser photography, information was obtained of shape changes-

~ of particles in flight. Under the conditions of the experiments, it is con-

cluded that A120 spheres fragment as a result of thermal stresses.
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SUMMARY

Safety analysis for space nuclear power supplies frequently requires that
the reentry ablation behavior of small spherical particles be predicted.
Since ballistic free-flight ranges are the only existing laboratory facility
capable of simultaneously simulating all of the reentry variables, a feasi-
bility study, sponsored by Sandia Laboratory, was carried out by the
General Motors Defense Research Laboratories.

The objective of this study was to determine the feasibility of launching

small spherical particles in the diameter range of 200 to 800 microns at -
high velocity and obtain useful data on ablation behavior using the latest

techniques in laser photography. Spheres of crystalline aluminum oxide

(A1203), supplied by Sandia, were used for the experiments.

The particles actually fired in the experiments varied from 400 to 700
microns in diameter and were launched at velocities from 7 km/sec to

8 km/sec. The range gas was air, and the range pressures varied from
25mm to 50mm of mercury.

Laser photographs and shadowgraphs of the particles in flight showed size
and shape changes, and the laser schlieren delineated the flow field about
the particles. (A Beckman and Whitley isodensitracer was used in the laser
shadowgraph data reduction.) From analysis of the data and considerations
of thermal stress levels, it is concluded that mechanical breakup of the
particles occurred during flight.
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INTRODUCTION

Safety analysis for space nuclear power supplies frequently requires that the
reentry ablation behavior of small spherical particles be predicted. Since
ballistic free-flight ranges are the only existing laboratory facility capable of
simultaneously simulating all of the reentry variables, a feasibility study,
sponsored by Sandia Laboratory, was carried out by the General Motors De-

fense Research Laboratories.

The objective of this study Wés to determine the feasibility of launching small
spherical particles in the diameter range of 200 to 800 microns at high velocity
and obtain useful data on ablation behavior using the latest techniques in laser
photography. Spheres of crystalline aluminum oxide (A1203), supplied by

Sandia, were used for the experiments.

The particles actually fired in the experiments varied from 400 to 700 microns
in diameter and were launched at velocities from 7 km/sec to 8 km/sec. The
range gas was air, and the range pressures varied from 25mm to 50mm of

mercury.

Laser photographs and shadowgraphs of the particles in flight showed size and
shape changes, and the laser schlieren delineated the flow field about the
particles. (A Beckman and Whitley isodensitracer was used in the laser shadow-

graph data reduction. )



DESCRIPTION OF FREE-FLIGHT RANGE
AND INSTRUMENTATION

Since models can be launched at full reentry velocity into a controlled
atmosphere in the free-flight range, the full simulation of flow field about

the model is possible.

The top of Figure 1 shows a scaled schematic of the light-gas gun used to
launch models at specified velocities. The gun is operated by firing a powder
charge which drives a piston into the pump tube, compressing the light gas
(typically hydrogen) to a high pressure and temperature. The release of a
diaphragm, or break valve, allows the (gas to impel a sabot containing the

model at a velocity of around 8 km/sec. 1) The bottom half of Figure 1 shows

the location of instrumentation used for the microsphere test. A pair of

spark shadowgraphs at each end of the range provide data on velocity at the
beginning and end of each test. In addition, the instrumentation includes

three Q-switched laser stations, as follows:

(1) Laser schlieren station
(2) Laser photograph station (simultaneous shadowgraphs)

(3) TBL laser shadowgraph station

Figures 2, 3 and 4 are schematics of the operation of these three pieces of
equipment. (Not shown are the filters which prevent all light but the laser
(6943A) from reaching the film, so that strongly ablating models can be
photographed without overexposing the film. )



A Calumet view camera (4x5) was adjusted to a depth of field of about 3 inches
around the firing line of the range for the laser photographs, made with Type
413 infrared Polaroid film. Simple Polaroid backs with positive-negative
film (P/N 55) were used for the shadowgraphs and schlieren; the collimating
lenses were Eastman Aero Ektar f:2.5. The P/N 55 negative film is capable
of a resolution of approximately 155 lines/mm, although the optics of the

system degrade the resolution to around 100 lines/mm.

An open-shutter streak camera provided some streak data on the particles;
in addition, target photos gave some information about breakup at impact.
(Problems in triggering, sensitivity, and equipment prevented getting any

time-differentiated spectrographic data with an STL image converter camera. )
ANALYTICAL STUDIES

In the computer investigations to determine the point in the range where
ablation begins, a computer program obtained from Aerospace Corporation
was used.(z) The Handbook of Thermophysical Properties(3) provided the
material properties for A1203 (Fig. 5). Figure 6, surface temperature as

a function of range distance for different range pressures and sphere

diameters, shows that the melting temperature is reached after a flight of
1 to 3 meters. (In this analysis the particle is treated as one-dimensional,
and no correction has been made for small particle size, as indicated by
Matula.(4)) Figure 7 shows both the fairly steep temperature gradient in the
body from a 400u-diameter particle and the percentage linear thermal

expansion.



Although the analysis is not valid after the melting temperature is reached,
some idea of the surface change to be expected during flight can be obtained
by treating the A1203 as a subliming ablator. Figure 8 shows the results of
this one-dimensional surface analysis. With the present experimental setup,

changes of around 10y would be expected.

Other calculations for the data runs (Figs. 9 — 14) included velocity and heat
input as a function of range distance (using an on-line computer), and the
equilibrium temperature of the particle (based on the assumption that heat

input during flight raised the temperature of the entire particle).
EXPERIMENTAL RESULTS

Microparticles ranging from 400u to 700 u were fired at velocities up to

8 km/sec. Before these firings, the smallest sphere that had been fired in
the Flight Physics Laboratory was 800u. Throughout the program, conven-
tional firing techniques and modified range shadowgraphs were employed,
with particular care given to alignment, cleanliness, light intensity, and

trigger sensitivity.

An improved amplifier and a narrow light fence were used in the shadow-
graph triggering network at the beginning of the range; the shadowgraphs at
the end of the range were triggered by light emitted from the ablating model.
A 1P21 photomultiplier with an emitter-follow-amplifier was used for the

triggers at the end, as well as for all other range instrumentation.



In Figure 15, typical trigger signals obtained from a 700-y particle, the
traces for interrupted light triggers show the amplified signal for the first
pair of shadowgraph stations, A and B; the traces for the emission trigger
from the laser photograph station include the original signal and the ampli-
fied signal. Even though the detection of particles will become increasingly
difficult as they become smaller and smaller, these tests indicate that the

trigger instrumentation developed for this program was adequate.

Figures 16 and 17 show a typical model (700 ) and sabot magnified ten
times. Instead of carrying a "cloud" of models, each sabot carried only a

single particle during launching.

Table I summarizes all the firings in this program. Even though results
were very acceptable ballistically, future programs are expected to be even
more successful. Some of the firing failures werée caused by the destruction
of the model by impact with fragments of the sabot at the separator, a
problem not usually met in conventional range operation; that is, models
ordinarily outrun pieces of the sabot during separation. In these tests,
however, pieces of the sabot outran the model, creating a cloud of debris
through which the model had to fly. The sabot separator has since been
redesigned.

Most of the data from the tests is photographic. In a typical shadowgraph
record at the beginning of the range (Fig. 18), the flow field is clearly
evident, as is the distinct smear of the particle, a result of the duration of
the spark source. A comparison of this record with the laser data shows

the great advantage of the laser's short pulse.

One of the two photographs obtained from the laser schlieren data is shown
in Figure 19 (reduced because the schlieren mirror is 12 inches in diameter),
and streak pictures which record some indication of particle breakup in two

of the data runs are shown in Figure 20.



Figure 21 shows the type of impact information obtained from some of the
shots: Run 1209 indicates a clean impact of one particle, despite photo-
graphic evidence that the particle had fragmented; run 1186, which did not
produce laser pictures, indicates the impact of a larger particle with many
small particles near the main crater. From the impact data, the particles
seem to range from 8 to over 100y at velocities similar to that of the
primary particle. Since these smaller particles have a low ballistic coefficient,
their velocity decreases faster than the velocity of the primary particle;
hence they are assumed to have broken away from the primary particle just
before impact. Additional confirmation that the primary particle has indeed
decreased in size due to particle breakup in flight comes from the size of the
crater formed by the primary particle; that is, the crater was formed by a
particle with a diameter of about 550 u,(5) whereas the original size of the

particle was 700u.
LASER SHADOWGRAPH AND PHOTOGRAPH RESULTS

Of the 20 firings in the program, 7 gave either laser shadowgraph or photo-
graphic data (Table II). Only the first round, C-1195, showed a complete
symmetrical particle at the laser photograph station; the impact information

indicates that some breakup may have occurred, but beyond the laser station.

Shadowgraphs were obtained for three rounds, C-1197, C-1202, and C-1211,
from both the laser photographic station and the TBL shadowgraph station.

In the last two of these, C=1202 and C-1211, particle breakup between the
two laser stations was clearly indicated, for only one particle appeared in
the laser photograph, whereas two appeared in the TBL laser shadowgraphs.
(Streak data for C-1211 indicated two large particles also.) Furthermore, no
clear impact information was obtained for C-1202, an indication that further

breakup may have occurred.

Round C-1197 was particularly interesting because the breakup and loss of

particles was evident in the laser shadowgraph (Fig. 22), where the main

6



particle is followed by four others ranging in size from about 50 to 100 .
The separation distances shown in Figure 23 give some idea of the rapidity
with which the smaller, secondary particles separate from the primary

particle.

The particles shown in Figure 22 are evident in the laser photograph as small
bright dots, such as those shown in Figure 24. Since the photographs of the
particle were obtained with reflected light, a film with high sensitivity was
needed. The film that was used, Polaroid Type 413, has a very large grain
with a resolution of 20 — 30 lines/mm; consequently, data on particle shape
had to be obtained from the higher-resolution film used in the shadowgraphs.
(It is possible, however, to correlate the bright images on the photograph

with the shadows in the shadowgraph obtained simultaneously.)

As expected, the increased heat input of rounds €-1195, 1196, and 1197,
caused a successively greater breakup of the particles; and with a much
higher range pressure than the first two, round C-1197 was in a greater

state of disintegration at the laser station.

PARTICLE SHAPE DETERMINATION
WITH THE ISODENSITRACER

The smear on a shadowgraph is a function of light duration and model velocity.
Figure 25 shows the effect of smear on a record. The sides perpendicular to
the line of flight of an object move in a straight line, but the front and rear
surfaces smear to varying degrees, depending upon their position on the body.
The object partly covers the smear of the front surface, so that the density
gradient on the film is expected to be steeper for the front surface than for

the rear surface. Although the steeper density gradient defines the front
surface more clearly than the rear surface is defined, the degree of definition
depends upon the light pulse. Duration of the light pulses for the two laser

shadowgraph stations is shown in Figure 26.



Normal output for the laser photographic station is similar to that of the TBL
laser. (Damage to the Nicol prism of the laser photograph station contri-
buted to the spiked output shown.) The film response causes the effective
smear on the film to be much less than the full 120 nsec; the laser station,

as will be explained, shows an effective smear determined from the isodensi-
tracer of about 25 to 35 nsec. The spiked output of the laser photograph
station results in a series of smeared images, of which the most distinct,

the one correlated with the first peak, is termed the principal image (Fig. 27).
The other, secondary images can be correlated with succeeding maximums

in the light impulse, and Figure 28 shows this time correlation for the rear
of the front face of round C-1195. A similar time correlation for the iso-

densitrace of round C-1197 for the TBL is shown in Figure 29.

(6)

meter trace, with the exception that instead of being just a record of film

The isodensitrace' ’ of the shadowgraph film resembles an ordinary isodensi-
density levels along a given line, it is in two dimensions. Changes in density
levels are indicated by a series of coded symbols consisting of blanks, dots,
and lines. Figure 30, part of the data reduction of the isodensitrace for
C-1195, plots density levels parallel and perpendicular to the line of flight,
with the sides shown fairly well and the smear of the front and rear surface
shown for the principal image. All isodensitraces showing a single particle

were enlarged 50 times.

The velocity of the particle at the laser photograph station was 6. 50 u/nsec,
and the length of the smear measured on the trace is 230 u; this correlates
exactly with the duration of the first light peak of 35 nsec. Figure 31, a
similar plot for the TBL laser, shows an effective smear of 130 u, with a
corresponding light interval of 20 nsec. This again correlates with the light

output shown in Figure 26.

The shape determined from the isodensity record of round C-1196 indicates

particle breakup (Fig. 32). Particles were also evident in the wake of the
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object in the shadowgraph. In a comparison of profiles from the bow to the
stern of the records for C-1195 and C-1196, the loss of fragments from
C-1196 is clearly evident (Fig. 33), and the shape of the particle determined
from this trace (Fig. 35) is characteristic of a material undergoing mechanical
breakup. Round C-1209 showed the same type of shape. In Figure 35, an
enlargement of the actual shadowgraph and the shape of the particle determined
from the isodensity record, the primary image and the slight darkening in

front of the primary image from the secondary images are both clear.

Figures 36 and 37 show the two particles evident at the TBL laser station for
C-1202 and C-1197; the relative sizes of the particles can be seen easily in
the isodensity records. Figures 38, 39, and 40 show the particle shapes
determined for rounds C-1202, 1210, and 1211 — all indicate particle breakup.
Although the shadowgraph of C-1210 and the TBL shadowgraph of C-1211
appear to be slightly out of focus, the break of the primary particle into two
large pieces is clear in C-1211, and the ragged outline of the particle in
C-1210. The small size of the particle (400 ) in round C-1210 makes the

record even more difficult to evaluate than the others.
DISCUSSION OF RESULTS

The mechanical breakup of the A1203 during flight can be attributed to the
thermal stresses induced in the sphere by the temperature gradient in the
particle. If the surface is uniformly heated to the melting temperature, an
analysis given by Timoshenko(7) can be used to calculate the level of induced

thermal stress.

If the surface temperature is assumed to be melt temperature, the maxi-

mum tension induced in the sphere is given by

_ oE
Oy ~ k1 2(1-v) (Tm _To)




Tm = melt temperature

To = initial temperature

o = temperature coefficient of expansion
E = elasticity modules

v = Poisson's ratio

k1 = a constant approaching 1

Based on this calculation,

o, ~ 400,000 psi

Even a slow heat input raising the temperature gradually (leaving, for
example, a 1000°F difference between the center of the sphere and the

surface) would still give a stress level of about
. _ o
oy ~ 120,000 psi AT = Tm - T0 = 1000°F

With a maximum tensile strength of approximately 40, 000 psi, alumina is a
brittle material that would not be expected to yield at high levels of stress.
Although the stress calculations may be refined by consideration of the
computer-predicted temperature profiles and a more detailed analysis, this
is probably not warranted since estimates of the order of the thermal stress
are considerably larger than the maximum tensile stress of the material. A
slight rotation of spheres in flight could give a more or less symmetrical
temperature distribution, thus the assumption that the temperature field

is symmetric may not limit the analysis seriously.

A low thermal diffusitivity of A1203 limits the initial temperature penetration

to a thin layer on the surface. Since an analysis of a thin layer gives essentially
(7)
d,

the particles during flight might be expected to occur, causing layers of the

the same stress levels as previously calculate mechanical degradation of

10



particle to flake off, before the formation of a melt layer. Being crystal,
A1203 might break along preferred crystalline planes; the launch attitude
itself might therefore have some effect on the eventual disintegration of the

sphere.

CONCLUSIONS

This study demonstrated that it is possible to launch and measure the velo-
city of individual spheres (diameter 400 to 700 microns) traveling at velocities
of 7 to 8 km/sec in air., It was also demonstrated that it is possible to obtain

definitive laser shadowgraphs of spheres traveling at these velocities.

The experimental results showed that mechanical breakup, or disintegration,
of the particles occurred during flight. Considerations of thermal stress
levels in the particles and the brittleness of AloOg would indicate that at the
velocities and free stream conditions and used in this study the particles

should be expected to break up in flight,

SUGGESTIONS FOR FUTURE WORK

Launching models in a light-gas gun produces accelerations as high as

2 x 106g. Despite this high acceleration load, the very small weight of the
particles keeps stress levels in the particles well below the strength of the
material. These levels, however, have the nature of a shock loading, with
the possibility that crystalline planes in the models might fracture in the
launch process. Thus, although the experiments indicate that thermal stress
levels in the particles are the cause of their breakup, a series of tests should
be made to eliminate the launch process as one of the possible factors in
particle breakup. A short program involving flight conditions with low heat
input, with laser photographs and shadowgraphs at the muzzle, would give

a definitive answer.

A continuation of the program, using a longer range, smaller particle sizes,
and lower range pressures, would also be advisable. (Pressures from 5 to

10mm of Hg, with a range of 150 ft and particles to 200y, could be obtained

in future tests.) 11



Finally, a program based on a yielding material, such as gold or platinum,
could be conducted. The results of feasibility tests indicate that with a 10-
nsec laser and some improvements in the optics of the shadowgraph stations,
shape changes of 30u to 40 could be determined. And if liquid droplets
were to form in the wake, particle size down to about 15y to 20u could

be distinguished.
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SCHLIEREN PROJECTILE
MIRROR (MODEL)

Figure 2 Schematic Laser Schlieren
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Figure 3 Schematic Laser Photograph and Shadowgraph Station

17




LASER

/
/

DIFFUSER
’/ PLATE

COLLIMATOR
LENS

PROJECTILE
FLIGHT LINE

COLLIMATOR
LENS

SHADOWGRAPHIC
FILM PLATE

Figure 4 Schematic Laser Shadowgraph (TBL)
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Figure 36 Isodensity Record Showing Two Particles, Round C-1197
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DIRECTION OF FLIGHT

Figure 38 Shape Determination, Round C-1202
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Figure 39 Shape Determination, Round C-1210
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Figure 40 Shape Determination, Round C-1211
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